If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x=385
We move all terms to the left:
2x^2+8x-(385)=0
a = 2; b = 8; c = -385;
Δ = b2-4ac
Δ = 82-4·2·(-385)
Δ = 3144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3144}=\sqrt{4*786}=\sqrt{4}*\sqrt{786}=2\sqrt{786}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{786}}{2*2}=\frac{-8-2\sqrt{786}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{786}}{2*2}=\frac{-8+2\sqrt{786}}{4} $
| 3p+p=25p-2-p | | 1.5x=250 | | 3j=5j-18 | | (x+1)^2-2x=2(x+1) | | 2y+25=26 | | 3(r-15)+4r=6 | | 24−12n= −72−72 | | 4x^2+x+67=0 | | x(2x+1)-5=2x(x+1)-x+1 | | 2z+4=-5 | | 2p+1=-17 | | 5(2-7n)=1 | | 2m^2-12=2m | | -1=n+4/4 | | (-2/7r)+(3/7)=5 | | -5/3y=45 | | 5(3+a)=30 | | 15=2*3.14159r | | m+2/6=1 | | 12.5=t/3.14159 | | 7(x-1)=-7(8-x) | | 2+b/9=1 | | C=2*3.14159r | | 110=2(3x+1) | | v-5/14=-1 | | -3(-2+x)=21 | | _9+12x=10x_11 | | 10=(2x+24)/5 | | 7b+10=b | | 21=3(a-1) | | -48.3m=724.5 | | x-3.1=5 |